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Anomaly detection is about finding patterns in data that do
conform to expected or normal behaviour.
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Most data in the world areunlabelled
n Oy anomaly labels

DatasetD = x®;y ©
i=1

Annotating large datasets is di cult, time-consuming and
expensive

Time series have temporal structure/dependencies
X = X{IXolUuXT o Xt 2 R%



| Representation Learning;
| Autoencoders;
| Variational Autoencoder (VAE)

I Recurrent Neural Networks (RNN);
| Long Short-Term Memory Network (LSTM)



Learning good data representations is important.

| Representations are useful for downstream tasks (e.g.,
regression and classi cation);

|  Make models more expressive and more accurate;
| Dismiss hand-designed features and representations;
I Neural networks are powerful representation learning models.



| Aim to reconstruct their inputx
| Two parts: anencoderand adecoder

| Parameterized by a feed-forward NN, a CNN, a RNN, ...
I Loss function measures the quality of the reconstructions
| Often under-completed, <dy)  dimensionality reduction



| Deep generative model rooted in Bayesian inference

z

p()= p@pxdz  p(zx)= PEP X2

p (x)

The evidence and the posterior are intractable!

Kingma & Welling, Auto-Encoding Variational Bayes , ICLR'14
Rezendeet al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models , ICML'14



Objective: Maximize the Evidence Lower Bound (ELBO)

Reconstruction term Regularization term (KL loss)

BN /

logp (x) Fq (zix) logp (xjz) . DkL g (zix)kp (Z)}

=Leso (; ;5 X)

Dk denotes the Kullback-Leibler divergence between the
approximate posterior and the prior.



What if data are not i.i.d. in time?
(e.g., time series, text, videos)

RNNs capture the temporal dependencies of the data
| Real-valued hidden statb;
| Feedback connection
| Parameters shared across timesteps

he=f(Ux¢+ Why 1)

f is often atanh or sigmoid



| Proposed to solve the
vanishing gradient problem

I  New cell and three gates

Hochreiter & Schmidhuber, Long Short-Term Memory , Neural Computation'97

Graveset al., Bidirectional LSTM Networks for Improved Phoneme Classi cation and Recognition
ICANN'0S



Based on avariational Autoencoder ;

Encoder and decoder are Bi-LSTMs;

Train a VAE on mostly data;

Learns a normal data manifold;

Anomaly detection in the latent (representations) space.



Proposed Approach

Representation
Learning




Proposed Approach

Representation
Learning




Reconstruction

Decoder

Bi-LSTM

Variational Layer

o
1=}
Q.
@D
@

En
Bi-L!

%]
=
<

Corruption

Input sequence X1 X2 X3 XT



X 2 R%

Input sequence X1 X2 X3 XT -



Denoising Autoencoding Criterion

Corruption process: additive Gaussian noise

p(xjx) = x+n ;

n  NormalQ; ,Z]I)

Vincentet al, Extracting and Composing Robust Features with Denoising Autoencoders , ICML'08

Bengioet al, Denoising Criterion for Variational Auto-Encoding Framework , ICLR'15
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Learning temporal dependencies

Bidirectional Long-Short Term Memory network
i
hi="hghy
| 256 units, 128 in each direction
| Sparse regularizatio(,z) = idgljzij

Hochreiteet al, Long-Short Term Memory , Neural Computation'97

Gravet al, Bidirectional LSTM Networks for Improved Phoneme Classi cation and Recognition , ICANN'05
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Variational Latent Space

Variational parameters derived using neural networks
( z 2z) = Encoderk)
Sample from the approximate posterior q (zjx)

ZISE 77 NormalQ; 1)

Kingma & WellingAuto-Encoding Variational Bayes , ICLR'14
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Decoder
Another Bi-LSTM.

Reconstruction Decoder Bi-LSTM(z)
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Reconstruction parameters:

. T
Xt Xt t=1
) Gaussian log-likelihood:
Reconstruction
S logp(xtjz;) 1k Xt x.k3
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h [
L(; ix)= Ez gz logp xjz + « Dk & (zjx)kp (2)

kL Weights the trade-o between reconstruction quality and KL
regularization over the latent representatian



Optimization & Regularization

About 270k parameters to optimize
AMS-Grad optimizer

Xavier weight initializatioR

Denoising autoencoding criterién

Sparse regularization in the encoder Bi-LSTM
KL cost annealing

Gradient clippin§

Training executed on a single GPU (NVIDIA GTX 1080 TI)

1Reddi, Kale & Kumar, On the Convergence of Adam and Beyond, ICLR'18

2Bengio et al., Understanding the Di culty of Training Deep Feedforward Neural Networks ~, AISTATS'10
3Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework , AAAI'17
4Arpit et al., Why Regularized Auto-Encoders Learn Sparse Representation?, ICML'16

5Bowman, Vinyals et al., Generating Sentences from a Continuous Space, SIGNLL'16
6Bengio et al., On the Di culty of Training Recurrent Neural Networks ~, ICML'13
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Based on the representations in the z-space.

I Wasserstein Metric (W)

s (zh‘h‘t |XL(\~‘L)

I Clustering

p(2'x")

Z ‘ . Y .:

score(z'*t) = medianfw (z'°t; z')2ghw






Electrocardiogram (ECG)

2.5 | T T
S 00
2
g —25
b
—5.0 1 ] . i
0 140 280 420 560
Samples

Dataset ECG5000: available in the UCR Time Series
Classification Archive [Keogh et al., 2015];

One heartbeat 140 samples;
5000 sequences;
Labelled, 5 classes annotated.






